
二叉堆
二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆。最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。
基本介绍
- 中文名:二叉堆
- 外文名:binary heap
- 作用:增加存储效率
- 分类:最大堆和最小堆
- 学科:数据结构
- 领域:数据结构
存储
二叉堆一般用数组来表示。如果根节点在数组中的位置是1,第n个位置的子节点分别在2n和 2n+1。因此,第1个位置的子节点在2和3,第2个位置的子节点在4和5。以此类推。这种基于1的数组存储方式便于寻找父节点和子节点。
如果存储数组的下标基于0,那幺下标为i的节点的子节点是2i+ 1与2i+ 2;其父节点的下标是⌊floor((i− 1) ∕ 2)⌋。函式floor(x)的功能是“向下取整”,或者说“向下捨入”,即取不大于x的最大整数(与“四捨五入”不同,向下取整是直接取按照数轴上最接近要求值的左边值,即不大于要求值的最大的那个值)。比如floor(1.1)、floor(1.9)都返回1。
如下图的两个堆:
1 11 / \ / \ 2 3 9 10 / \ / \ / \ / \ 4 5 6 7 5 6 7 8 / \ / \ /\ /\ 8 9 10 11 1 2 3 4
将这两个堆保存在以1开始的数组中:
位置: 1 2 3 4 5 6 7 8 9 10 11左图: 1 2 3 4 5 6 7 8 9 10 11右图: 11 9 10 5 6 7 8 1 2 3 4
对于一个很大的堆,这种存储是低效的。因为节点的子节点很可能在另外一个记忆体页中。B-heap是一种效率更高的存储方式,把每个子树放到同一记忆体页。
如果用指针鍊表存储堆,那幺需要能访问叶节点的方法。可以对二叉树“穿线”(threading)方式,来依序遍历这些节点。
基本操作
在二叉堆上可以进行插入节点、删除节点、取出值最小的节点、减小节点的值等基本操作。
插入节点
在数组的最末尾插入新节点。然后自下而上调整子节点与父节点(称作up-heap或bubble-up, percolate-up, sift-up, trickle up, heapify-up, cascade-up操作):比较当前节点与父节点,不满足堆性质则交换。从而使得当前子树满足二叉堆的性质。时间複杂度为 。
删除根节点
删除根节点用于堆排序。
对于最大堆,删除根节点就是删除最大值;对于最小堆,是删除最小值。然后,把堆存储的最后那个节点移到填在根节点处。再从上而下调整父节点与它的子节点:对于最大堆,父节点如果小于具有最大值的子节点,则交换二者。这一操作称作down-heap或bubble-down, percolate-down, sift-down, trickle down, heapify-down, cascade-down,extract-min/max等。直至当前节点与它的子节点满足堆性质为止。
构造二叉堆
最优算法是从一个节点元素任意放置的二叉树开始,自底向上对每一个子树执行删除根节点时的Max-Heapify算法(这是对最大堆而言)使得当前子树成为一个二叉堆。具体而言,假设高度为h的子树均已完成二叉堆化,那幺对于高度为h+1的子树,把其根节点沿着最大子节点的分枝做调整,最多需要h步完成二叉堆化。可以证明,这个算法的时间複杂度为O(n)。