新闻资讯
看你所看,想你所想

Python数据分析

Python数据分析

Python数据分析

《Python数据分析(影印版)》由麦金尼撰写,他是pandas库的主要作者。《Python数据分析(影印版)》也是一本具有实践性的指南,指导那些使用Python进行科学计算的数据密集型套用。它适用于刚刚开始使用Python的分析师,或者是进入科学计算领域的Python程式设计师。

基本介绍

  • 书名:Python数据分析
  • 作者:麦金尼 (Wes McKinney)
  • 出版社:东南大学出版社
  • 页数:452页
  • 开本:16
  • 品牌:南京东南大学出版社
  • 外文名:Python for Data Analysis
  • 类型:计算机与网际网路
  • 出版日期:2013年5月1日
  • 语种:英语
  • ISBN:7564142049

基本介绍

内容简介

《Python数据分析(影印版)》内容简介:你是否在寻找一本完整介绍Python操纵、处理、提取和压缩结构化数据的指南?《Python数据分析(影印版)》包含了许多实例分析,通过若干个Python库——包括NumPy,pandas,matplotlib和IPython——为你展示了如何高效地解决大量数据分析的问题。

作者简介

作者:(美国)麦金尼(Wes McKinney)

图书目录

Preface
1.Preliminaries
What Is This Book About?
Why Python for Data Analysis?
Python as Glue
Solving the "Two—Language" Problem
Why Not Python?
Essential Python Libraries
NumPy
pandas
matplotlib
IPython
SciPy
Installation and Setup
Windows
Apple OS X
GNU/Linux
Python 2 and Python 3
Integrated Development Environments (IDEs)
Community and Conferences
Navigating This Book
Code Examples
Data for Examples
Import Conventions
Jargon
Acknowledgements
2.Introductory Examples
1.usa.gov data from bit.ly
Counting Time Zones in Pure Python
Counting Time Zones with pandas
MovieLens 1M Data Set
Measuring rating disagreement
US Baby Names 1880—2010
Analyzing Naming Trends
Conclusions and The Path Ahead
3.IPython:An Interactive Computing and Development Environment
IPython Basics
Tab Completion
Introspection
The %run Command
Executing Code from the Clipboard
Keyboard Shortcuts
Exceptions and Tracebacks
Magic Commands
Qt—based Rich GUI Console
Matplotlib Integration and Pylab Mode
Using the Command History
Searching and Reusing the Command History
Input and Output Variables
Logging the Input and Output
Interacting with the Operating System
Shell Commands and Aliases
Directory Bookmark System
Software Development Tools
Interactive Debugger
Timing Code: %time and %timeit
Basic Profiling: %prun and %run —p
Profiling a Function Line—by—Line
IPython HTML Notebook
Tips for Productive Code Development Using IPython
Reloading Module Dependencies
Code Design Tips
Advanced IPython Features
Making Your Own Classes IPython—friendly
Profiles and Configuration
Credits
4.NumPy Basics:Arrays and Vectorized Computation
The NumPy ndarray: A Multidimensional Array Object
Creating ndarrays
Data Types for ndarrays
Operations between Arrays and Scalars
Basic Indexing and Slicing
Boolean Indexing
Fancy Indexing
Transposing Arrays and Swapping Axes
Universal Functions: Fast Element—wise Array Functions
Data Processing Using Arrays
Expressing Conditional Logic as Array Operations
Mathematical and Statistical Methods
Methods for Boolean Arrays
Sorting
Unique and Other Set Logic
File Input and Output with Arrays
Storing Arrays on Disk in Binary Format
Saving and Loading Text Files
Linear Algebra
Random Number Generation
Example: Random Walks
Simulating Many Random Walks at Once
5.Getting Started with pandas
Introduction to pandas Data Structures
Series
DataFrame
Index Objects
Essential Functionality
Reindexing
Dropping entries from an axis
Indexing, selection, and filtering
Arithmetic and data alignment
Function application and mapping
Sorting and ranking
Axis indexes with duplicate values
Summarizing and Computing Descriptive Statistics
Correlation and Covariance
Unique Values, Value Counts, and Membership
Handling Missing Data
Filtering Out Missing Data
Filling in Missing Data
Hierarchical Indexing
Reordering and Sorting Levels
Summary Statistics by Level
Using a DataFrame's Columns
Other pandas Topics
Integer Indexing
Panel Data
5.Data Loading, Storage, and File Formats
Reading and Writing Data in Text Format
Reading Text Files in Pieces
Writing Data Out to Text Format
Manually Working with Delimited Formats
JSON Data
XML and HTML: Web Scraping
Binary Data Formats
Using HDF5 Format
Reading Microsoft Excel Files
Interacting with HTML and Web APIs
Interacting with Databases
Storing and Loading Data in MongoDB
7.Data Wrangling: Clean, Transform, Merge, Reshape
Combining and Merging Data Sets
Database—style DataFrame Merges
Merging on Index
Concatenating Along an Axis
Combining Data with Overlap
Reshaping and Pivoting
Reshaping with Hierarchical Indexing
Pivoting "long" to "wide" Format
Data Transformation
Removing Duplicates
Transforming Data Using a Function or Mapping
Replacing Values
Renaming Axis Indexes
Discretization and Binning
Detecting and Filtering Outliers
Permutation and,Random Sampling
Computing Indicator/Dummy Variables
String Manipulation
String Object Methods
Regular expressions
Vectorized string functions in pandas
Example: USDA Food Database
……
8.Plotting and Visualization
9.Data Aggregation and Group Operations
10.Time Series
11.Financial and Economic Data Applications
12.Advanced NumPy
Appendix:Python Language Essentials
Index

名人推荐

科学和数据分析领域已经等了本书好几年了:具有具体的实用建议以及如何聚沙成塔的见解。它应该会成为接下来若干年里Python科学计算方面的经典参考资料。”
——Fernando Perez UC Berkeley大学的助理 研究员,也是IPython的原创作者之一

转载请注明出处海之美文 » Python数据分析

相关推荐

    声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:ailianmeng11@163.com